

Concept Review Hackaday Prize 2020 - Conservation X Labs

July 20, 2020

Erin Kennedy Leonardo Ward Oluwatobi Oyinlola

SUPPLYFRAME DESIGNLAB HACKADAY PRIZE 2020

Part 1: **Research & Insights**

640,000 tonnes of ghost gear is lost in our oceans every year 71% of marine animal entanglements involve plastic ghost gear

Data source: Ghosts Beneath the Waves - World Animal Protection Project Photo credit: Dave Bretherton, Olive Ridley

Fisher Pain Points

- 1.
- 2. Have to re-bait the traps every day
- Unpredictable fish stocks can vary their income 3.
- **Budgets are limited** 4.
- 5.
- 6. Don't want to cause entanglements or loss of gear

Need to accomplish a lot of tasks, in a harsh environment, quickly

Having to comply with legislation ... "yet another piece of legislation"

Problem Statement

How might we decrease marine species entanglements and ghost gear creation - while making the commercial fishing process more data driven?

Information from Fishers

- They don't look at information before going out fishing
- Decades old industry, doesn't get updated with new tech
- Soak time is dictated by bait
- Specific cause and source of ghost gear is somewhat unknown to the fishers
- Variety of operations, gear types, environments, catches, priorities
- Interested in free beta testing, with a smile

Interviews conducted include...

Fishers in Nigeria

Market vendors in Venezuela

Fishing industry entrepreneurs in Canada (east and west coast)

The Deputy Minister of the Department of Fisheries and Oceans in Canada was forwarded our <u>hackaday.io</u> page and research report. Key contacts to come from this soon.

Dialogue Needed for Change

Training

Planet Earth: Environment and Wildlife

Legislation & Regulation

Innovative Solutions

Visionarie S

Fishers

Part 2: Our Proposal

Outlandish Ideas

- Cyborg lobster
- Barrel roll gear tangler retrieval
- Robo-starfish gear folder
- Rope elevator

no folds

Solution Concept

- Ropeless system to avoid vertical lines
- Intelligent buoy with Position Marking and Communication
- Modular design for more adaptability
- Monitor of gear capacity
- Compliance with regulations

 10% of identified Ghost Gear were ropes from traps and pots (Stelfox et al. 2016)

 Traps and Pots have a higher ghost fishing efficiency

 Trap placement location is lacking data (based on interviews with fishers)

Stelfox, Martin & Hudgins, Jillian & Sweet, Michael. (2016). A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs. Marine Pollution Bulletin. 111. 10.1016/j.marpolbul.2016.06.034.

Solution Concept: System

Solution Concept: Deployment

- Position marking
- System integrated onto trap

Solution Concept: The Catch

 Ropeless mechanism

Solution Concept: Retrieval

- Position Marking
- Communication

Solution Concept: Navigation App

- GPS with offline maps
- Navionics
- OpenCPN
- iNavX

Part 3: Implementation

Scope of Work

The project comprises three main components working together as a system:

- 1. Ropeless adaptation
- 2. Intelligent buoy
- 3. Monitor of gear capacity

Major Constraints:

- Battery powered (72 hours)
- AC supply on boat
- Mobile phone for data

Monitor

- Presently, fishers evaluate trap location from intuition: bait levels, catch, competition
- Monitor addresses a gap that fishers do not know:
 - 1. Fish traffic around the trap
 - 2. When fish enter the trap
- When trap brought to surface for re-baiting, transfer data
 - Lobster and prawn traps re-baited every 1-3 days
- Information displayed on a wearable armband
- Fisher decides if trap needs to be relocated
 - Making the most of short duration fishing seasons protecting animal migration
- How? Computer vision and sensors approach
- Standalone or integrate into existing systems

Source: https://blog.x.company/introducing-tidal-1914257962c3

Path to Implementing the Monitor

Monitor process needs to be able to be quickly adapted for use in different locations to detect species

Detecting a rubber duck with Bowie the robot. Source: RobotMissions.org 2018

Part 4: Discussion

Additional Information

Design Information

Intelligent Buoy Requirements

- 1. 72 hours minimum battery life
- 2. Operate in harsh environment and underwater to depths of 500 metres
- 3. Measure temperature at bottom and surface
- 4. Locking & unlocking mechanism
- 5. The buoy will operate & survive in waves up to 1.5 metres

Assumptions

- Fishers will have access to 240/120
 VAC power
- 2. Fishers have a phone / mobile device to look at data from the buoy

